Application Note

Culture Of 3D Cell Aggregates In Perfusion In A DASbox Mini Bioreactor System

By António Roldão, et al

Culture Of 3D Cell Aggregates In Perfusion In A DASbox Mini Bioreactor System

Three-dimensional (3D) cell aggregates are of great interest for many applications, including disease modeling, drug toxicity assessment, and manufacturing of stem cell-based products. Stirred-tank bioreactors are promising culture systems for 3D cell aggregates, as they allow efficient establishment and maintenance of cell aggregates, process monitoring and control, and process scale-up to larger volumes. Furthermore, they can be operated in perfusion mode, which allows 3D cell aggregates to be sustained longer than in traditional batch cultures.

Researchers at the Instituto de Biologia Experimental e Tecnológica (iBET) in Portugal have tested the suitability of the Eppendorf DASbox Mini Bioreactor System for the cultivation of the human tumor cell line H157 as 3D cell aggregates. First, they evaluated the impact of impeller geometry on cell growth and aggregate formation. After identifying the best impeller option, they cultivated H157 cell aggregates in perfusion mode for up to 15 days. They used a stainless steel sparger with a pore size of 10 – 20 μm to retain 3D cell aggregates in culture while ensuring the continuous flow of fresh medium and the removal of metabolic waste products.

The results demonstrate the suitability of the DASbox Mini Bioreactor System for bioprocess development and the intensification of 3D cell aggregate cultures.

access the Application Note!

Get unlimited access to:

Trend and Thought Leadership Articles
Case Studies & White Papers
Extensive Product Database
Members-Only Premium Content
Welcome Back! Please Log In to Continue. X

Enter your credentials below to log in. Not yet a member of Bioprocess Online? Subscribe today.

Subscribe to Bioprocess Online X

Please enter your email address and create a password to access the full content, Or log in to your account to continue.

or

Subscribe to Bioprocess Online