Application Note

Application Note: Optimizing Performance Of The Membrane-Free, Oris™ Cell Migration Assay For High Throughput Screening Using The BioTek Synergy™ HT Multi-Mode Microplate Reader

Source: BioTek Instruments, Inc.

Cell migration is a fundamental activity intrinsic to development and maintenance of homeostasis in processes such as wound healing, neovascularization and the workings of the immune system. The failure of cells to migrate, or the movement of invasive cells into inappropriate locations, is central to many disease processes such as dysregulated wound healing and cancer. Additionally, understanding cell migration is critical to emerging technologies such as tissue engineering and the successful bio-integration of prosthetic devices. There is a need for new technologies that will enable migration and invasion assays that are more reliable, less labor intensive, consume fewer cells and reagents, can be performed in less time and are amenable to high throughput formats.

The Oris™ Cell Migration Assay is a multistep process that starts with the application of a mask to the bottom of the wells of a 96-well microplate. In addition, a polymeric insert is fitted to the inside of the wells of the microplate. This insert prevents cells from seeding the inner analytic zone of the well when cells are added to the wells of the microplate. After cell attachment has occurred, the inserts are removed, allowing cells to freely migrate into the central analytic zone of the wells. Cells that have not migrated into the analytic zone are blocked from view by the mask initially applied to the plate bottom. Migrated cells are analyzed by microscopy or by detection with a Synergy HT Multi-Mode Microplate Reader using fluorescence mode.

access the Application Note!

Get unlimited access to:

Trend and Thought Leadership Articles
Case Studies & White Papers
Extensive Product Database
Members-Only Premium Content
Welcome Back! Please Log In to Continue. X

Enter your credentials below to log in. Not yet a member of Bioprocess Online? Subscribe today.

Subscribe to Bioprocess Online X

Please enter your email address and create a password to access the full content, Or log in to your account to continue.

or

Subscribe to Bioprocess Online