Complex Carbohydrate Chemistry: A Key To Addressing Unmet Medical Needs

Source: Outsourced Pharma

Carbohydrates have been shown to play a fundamental role in normal cell functions as well as in major disease pathologies including cancer, cardiovascular disease and inflammatory diseases. As a class of molecules, carbohydrates have an enormous range of shape, orientation and composition. Due to this structural diversity, carbohydrate chemistry can be applied to develop a broad range of complex therapeutic molecules and drugs, including pure carbohydrates as well as protein-linked carbohydrates, or glycoproteins. However, as a consequence of their structural complexity, carbohydrates have not received as much scientific attention as nucleic acids and proteins. However, significant progress is being made in this area.

Consider diabetes mellitus, a condition shared by nearly 26 million Americans and growing, according to the U.S. Centers for Disease Control and Prevention. As uncontrolled diabetes can lead to micro- and macrovascular complications, tighter but safe glycemic control is imperative. Interestingly, even as high carbohydrate intake can lead to a rise in blood sugar (glucose) and increase one’s risk of diabetes, research suggests that complex carbohydrate chemistry is one key to reducing the uptake of sugar into the bloodstream.